**Tropospheric Emissions: Monitoring of Pollution** 



North American aerosol measurements from geostationary orbit with **Tropospheric Emissions: Monitoring of Pollution** (TEMPO, tempo.si.edu)

> Kelly Chance **Smithsonian Astrophysical Observatory**

#### **NOAA Satellite Aerosol Products Workshop** September 26, 2018






minutes

Measurement of Pollution

#### Hourly atmospheric pollution from geostationary Earth orbit



PI: Kelly Chance, Smithsonian Astrophysical Observatory
Instrument Development: Ball Aerospace
Project Management: NASA LaRC
Other Institutions: NASA GSFC, NOAA, EPA, NCAR, Harvard, UC
Berkeley, St. Louis U, U Alabama Huntsville, U Nebraska, RT Solutions, Carr Astronautics

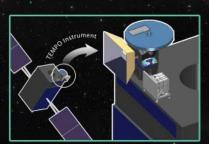
International collaboration: Mexico, Canada, Cuba, Korea, U.K., ESA, Spain

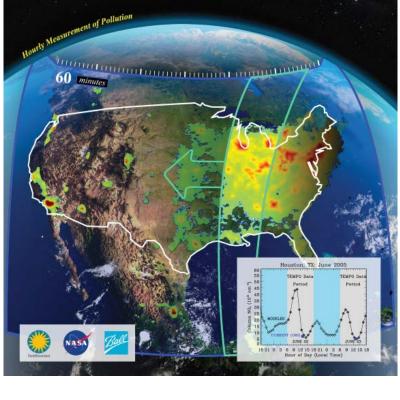
#### Selected Nov. 2012 as NASA's first Earth Venture Instrument

- Instrument delivery 2018
- NASA will arrange hosting on commercial geostationary communications satellite with launch expected NET 11/2019

#### Provides hourly daylight observations to capture rapidly varying emissions & chemistry important for air quality

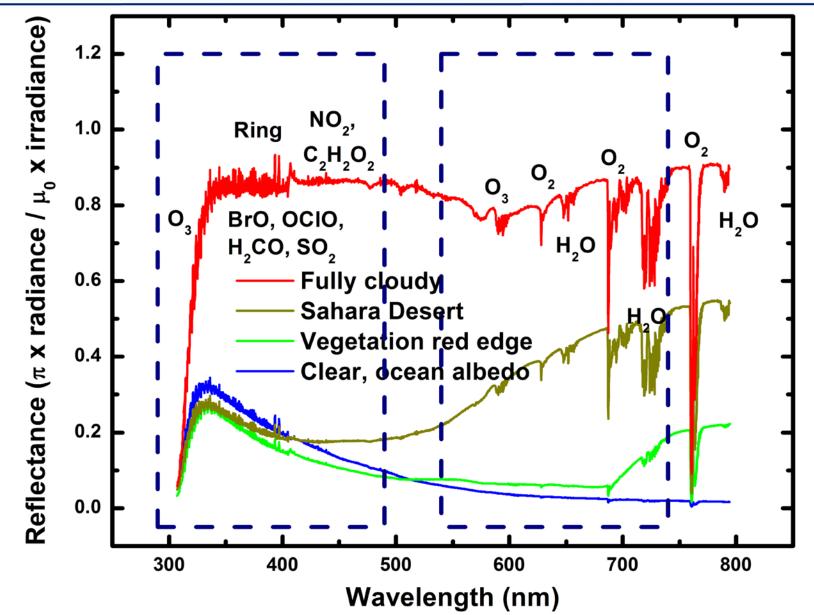
- UV/visible grating spectrometer to measure key elements in tropospheric ozone and aerosol pollution
- Distinguishes boundary layer from free tropospheric & stratospheric ozone


#### Aligned with Earth Science Decadal Survey recommendations


- Makes many of the GEO-CAPE atmosphere measurements
- Responds to the phased implementation recommendation of GEO-CAPE mission design team

#### TEMPO

#### Tropospheric Emissions: Monitoring of Pollution


TEMPO's concurrent high temporal (hourly) and spatial resolution measurements from geostationary orbit of tropospheric ozone, aerosols, their precursors, and clouds create a revolutionary dataset that provides understanding and improves prediction of air quality and climate forcing in Greater North America.



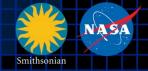


#### 9/26/18 North American component of an international constellation for air quality observations

### Typical TEMPO-range spectra (from ESA GOME-1)



DU

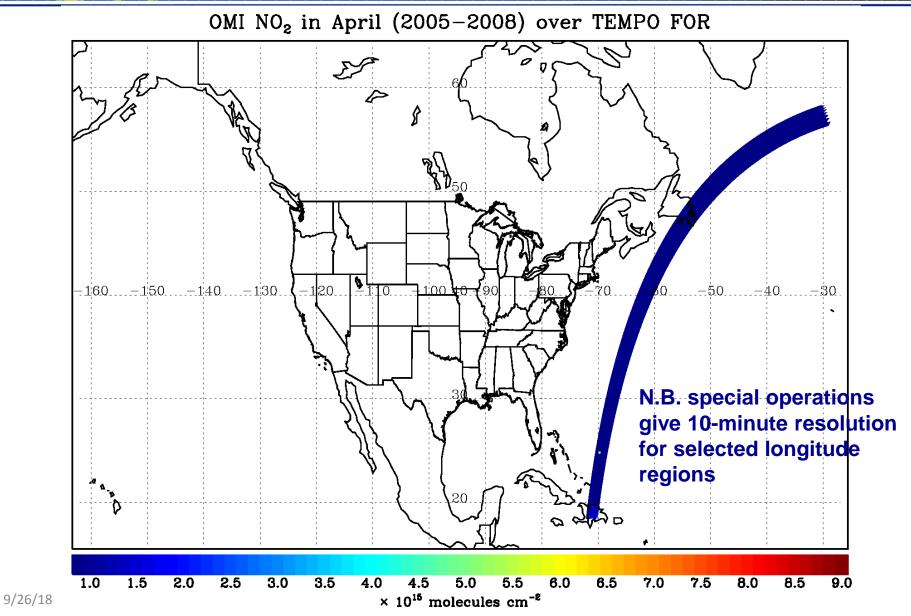

NASA





- Instrument completed August 23, now in storage
- System Acceptance Review October 11-12
   TEMPO is then officially delivered
- Select commercial geostationary satellite host for launch 2020+
  - TEMPO operating longitude and launch date are not known until after host selection

# **Heat sink installed**






1PO

### **TEMPO** hourly NO<sub>2</sub> sweep

PO



NASA

mithsoniar

### Los Angeles coverage

EMPO

Oxnard

Mugu Canyon

OH-

Santa Monica Basin



Santa Clarita Thousand Oaks Rancho Cucamonga A Fontan 1 Angeles Pomona Santa Monica Dume Canyon Riv Santa Monica Canvon Corona Torrance Anaheim

Long Beach

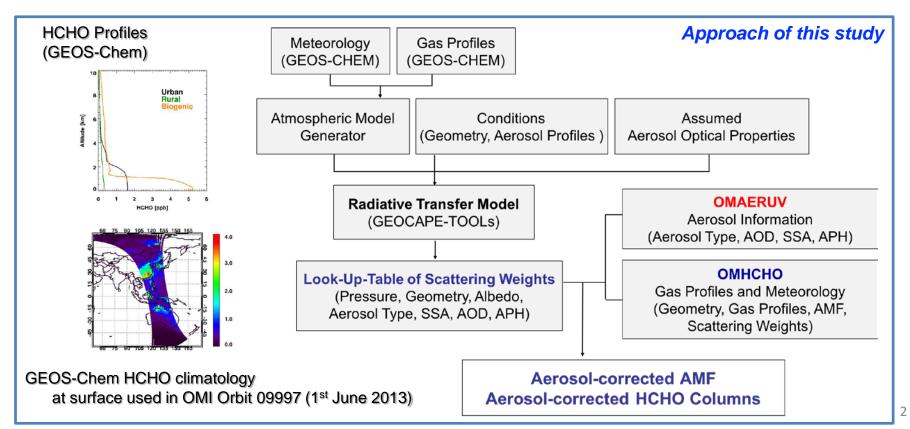
Image Landsat © 2015 Google Irvine Huntington Beach

ne Beach Google earth

# Aerosols and clouds

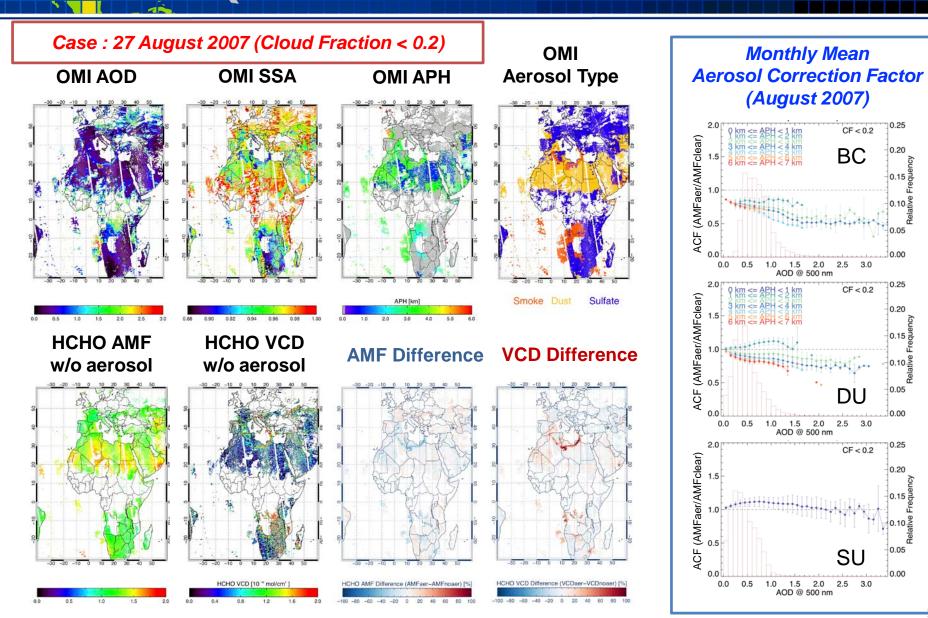
**Aerosols** TEMPO's launch algorithm for retrieving aerosols will be based upon the OMI aerosol algorithm that uses the sensitivity of near-UV observations to particle absorption to retrieve **absorbing aerosol index** (AAI), **aerosol optical depth** (AOD) and **single scattering albedo** (SSA). TEMPO will derive its pointing from one of the **GOES-17** or **GOES-17** satellites and is thus automatically co-registered. TEMPO may be used together with the advanced baseline imager (ABI) instrument, particularly the 1.37µm bands, for aerosol retrievals, reducing AOD and fine mode AOD uncertainties from 30% to 10% and from 40% to 20%.

**Clouds** The launch cloud algorithm is be based on the rotational Raman scattering (RRS) cloud algorithm that was developed for OMI by NASA GSFC. Retrieved cloud pressures from OMCLDRR are not at the geometrical center of the cloud, but rather at the optical centroid pressure (OCP) of the cloud. **Additional** cloud products are possible using the  $O_2$ - $O_2$  collision complex and/or the  $O_2 B$  band.


#### Aerosol effects on trace gas retrieva

NASA

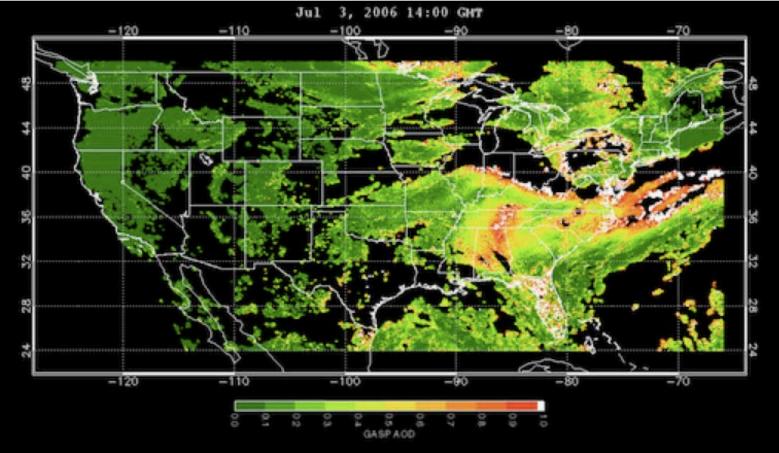
Aerosols in the atmosphere have a large impact on trace gas retrievals using UV/visible measurements, affecting the air mass factor (AMF) calculation, as they change the light path and the total radiance observed by the satellite sensors.


PO

Smithsonian Astrophysical Observatory (SAO) OMI trace gas products currently consider aerosols implicitly that inaccurate a priori assumptions of aerosols are a source of uncertainty in trace gas retrievals. The evaluation of aerosol effects on AMF calculation is required to improve the accuracy of trace gas retrievals.



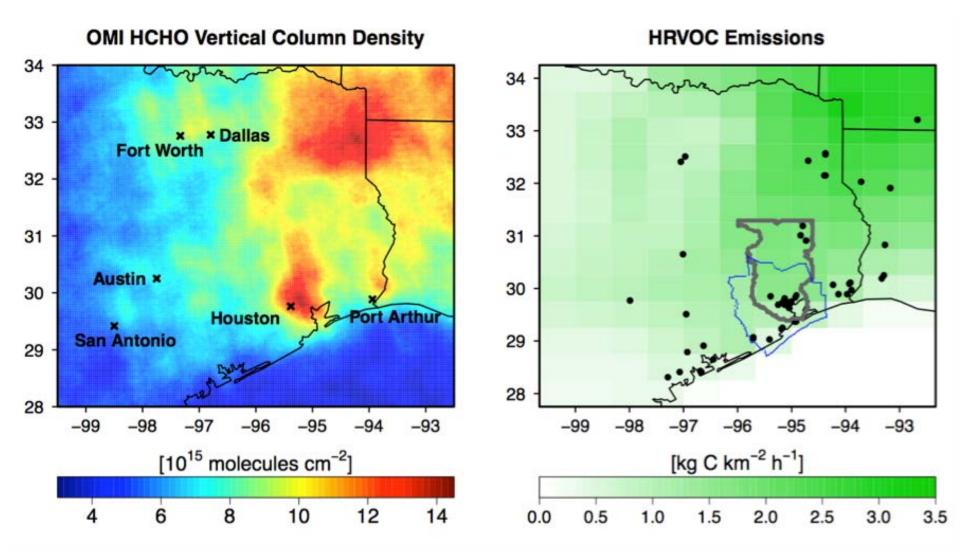
#### **Aerosol Correction Results**


PO



NASA

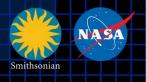

# www.epa.gov/rsig


TEMPO will use the EPA's Remote Sensing Information Gateway (RSIG) for subsetting, visualization, and product distribution – to make TEMPO YOUR instrument



NASA

### Oversampling Lei Zhu *et al.*, 2014






PO

The end! Thanks to NASA, ESA, Ball Aerospace & Technologies Corp.

100











Air quality requirements from the GEO-**CAPE Science Traceability** Matrix

#### 11-28-2011 DRAFT GEO-CAPE aerosol-atmospheres Science Traceability Matrix BASELINE and THRESHOLD

| Science Questions                                                                                                     | <u> </u>                                                                                                                                                                                            | Measurement Objectives<br>color flag maps to Science Questions)                                                                                                                                                                                                                                                                                                                                                                                                      | Measurement Requirements<br>(mapped to Measurement Objectives)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | Measurement Rationale                                                                                                                      |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What are the<br>temporal and<br>spatial variations                                                                    | Baseline measurements <sup>1</sup> :<br>O3, NO2, CO, SO2, HCHO, CH4, NH3, CHOCHO,<br>different temporal sampling frequencies, 4 km x 4<br>km product horizontal spatial resolution at the center    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Geostationary Observing Location: 100 W +/-10                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                                                                                                            | Provides optimal view of North America                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                       |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Column measurements: A to K<br>All the baseline and threshold species                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                                                                                                            | Continue the current state of practice in<br>vertical; add temporal resolution.                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| of emissions of<br>gases and<br>aerosols important<br>for air quality and                                             |                                                                                                                                                                                                     | center of the domain.                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    | Cloud Camera 1 km x 1km horizontal spatial<br>resolution, two spectral bands, baseline only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                                                                                                                                            |                                                                                                                            | Improve retrieval accuracy, provide<br>diagnostics for gases and aerosol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                       |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    | Vertical information: A to K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                                                                                                                                            |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| climate?                                                                                                              | CC                                                                                                                                                                                                  | <u>reshold measurements<sup>1</sup>;</u><br>) hourly day and night; O3, NO2 hourly when<br>(A<70; AOD hourly (SZA<50) ; at 8 km x 8 km                                                                                                                                                                                                                                                                                                                               | Two pieces of information in the<br>troposphere in daylight with<br>sensitivity to the lowest 2 km |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Bas                                       | CO<br>eline and<br>shold)                                                                                                                  | Separate the lower-most troposphere from the free troposphere for O3, CO.                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ol> <li>How do physical,<br/>chemical, and<br/>dynamical<br/>processes<br/>determine</li> </ol>                      | pro                                                                                                                                                                                                 | oduct horizontal spatial resolution at the center of a domain.                                                                                                                                                                                                                                                                                                                                                                                                       | Altitude (+/- 1km) AOCH<br>(baseline only)                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                                                                                                            |                                                                                                                            | Detect aerosol plume height; improve retrieval accuracy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                       | Measure the threshold or baseline species or<br>properties with the temporal and spatial<br>resolution specified (see next column) to quantify                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Product horizontal spatial resolution at the center of                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | he center of t                                                                                                                             | he domain, (nominally 100W. 35 N ): 🖪 to                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                       |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 km x 4 km (baseline),<br>8 km x 8 km (threshold)                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gas                                        | es                                                                                                                                         | Capture spatial/temporal variability; obt                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| tropospheric                                                                                                          |                                                                                                                                                                                                     | the underlying emissions, understand emission<br>processes, and track transport and chemical                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                    | 8 km x 8 km (baseline, thresho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | ld) Aerosol<br>properties                                                                                                                  |                                                                                                                            | better yields of products.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| composition and<br>air quality over<br>scales ranging                                                                 | в                                                                                                                                                                                                   | evolution of air pollutants <b>(1</b> , 2, 3, 4, 5, 6)<br>Measure AOD, AAOD, and NH3 to quantify                                                                                                                                                                                                                                                                                                                                                                     | 16 km x 16 km (baseline only)                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Outer                                      | r open                                                                                                                                     | Inherently larger spatial scales, sufficier<br>to link to LEO observations                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                       |                                                                                                                                                                                                     | aerosol and nitrogen deposition to land and                                                                                                                                                                                                                                                                                                                                                                                                                          | Spectral region : [A to H]                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                                                                                                            |                                                                                                                            | Typical use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| from urban to<br>continental,                                                                                         | _                                                                                                                                                                                                   | coastal regions 🔁 🐴                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UV-Vis or UV-TIR O3                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                                                                                                            |                                                                                                                            | Provide multispectral retrieval information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| diurnally to                                                                                                          | C.                                                                                                                                                                                                  | Measure AOD, AAOD, and AOCH to relate<br>surface PM concentration, UV-B level and<br>visibility to aerosol column loading 1 2, 3, 4, 5.                                                                                                                                                                                                                                                                                                                              |                                                                                                    | SWIR, MWIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            | со                                                                                                                                         |                                                                                                                            | in daylight<br>Retrieve gas species from their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| seasonally?                                                                                                           |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | SO2, HCHO<br>CH4                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                       | -                                                                                                                                                                                                   | <b>6</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TIR                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NH3                                        |                                                                                                                                            |                                                                                                                            | atmospheric spectral signatures (typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ol> <li>How does air<br/>pollution drive<br/>climate forcing<br/>and how does</li> </ol>                             | Determine the instantaneous radiative forcings<br>associated with ozone and aerosols on the<br>continental scale and relate them quantitatively<br>to natural and anthropogenic emissions [3, 5, 5] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vis                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | 02, CHOCI                                                                                                                                  | но                                                                                                                         | Obtain spectral-dependence of AOD fo<br>particle size and type information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                       |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UV-deep blue A4                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AAOD                                       | AAOD                                                                                                                                       |                                                                                                                            | Obtain spectral-dependence of AAOD f<br>aerosol type information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| climate change                                                                                                        | E.                                                                                                                                                                                                  | Observe pulses of CH4 emission from biogenic<br>and anthropogenic releases; CO anthropogenic<br>and wildfire emissions; AOD, AAOD, and AI from                                                                                                                                                                                                                                                                                                                       | UV-deep                                                                                            | blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AI                                         | 4                                                                                                                                          |                                                                                                                            | Provide absorbing aerosol information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| affect air quality                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vis-NIR AOCH                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | Retrieve aerosol height 3                                                                                                                  |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| on a continental<br>scale?                                                                                            |                                                                                                                                                                                                     | fires; AOD, AAOD, and AI from dust storms; SO2<br>and AOD from volcanic eruptions [], 4, 6]                                                                                                                                                                                                                                                                                                                                                                          | Atmospheric measurements over Land/Coastal ar                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | eas, baseline and threshold: A to K                                                                                                        |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| How can                                                                                                               | 17                                                                                                                                                                                                  | Quantify the inflows and outflows of O3, CO, SO2, and aerosols across continental boundaries                                                                                                                                                                                                                                                                                                                                                                         | Species                                                                                            | Time<br>resolutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Тур                                        | ical                                                                                                                                       |                                                                                                                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| observations from<br>space improve air                                                                                |                                                                                                                                                                                                     | to determine their impacts on surface air quality<br>and on climate [2, 3, 5]<br>Characterize aerosol particle size and type from                                                                                                                                                                                                                                                                                                                                    | 03                                                                                                 | Hourly,<br>SZA<70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                          | 18 2km                                                                                                                                     | m: 10 ppbv<br>-tropopause<br>ppbv                                                                                          | Observe the with two pieces of<br>information in the troposphere with<br>sensitivity to the informat 2 km for surfa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| quality forecasts<br>and assessments                                                                                  |                                                                                                                                                                                                     | spectral dependence measurements of AOD and AAOD [ 2, 3, 4, 5, 6]                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                          | O-2 k                                                                                                                                      | tosphere: 5%<br>m: 20ppbv                                                                                                  | AQ; also transport, c. Hite forcing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| for societal<br>benefit?                                                                                              | H.                                                                                                                                                                                                  | Acquire measurements to improve representation of processes in air quality models                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    | co de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            | 2 x10 <sup>10</sup> 2km-tropopaus<br>20 ppbv                                                                                               |                                                                                                                            | burning plumes; observe to with two<br>pieces of information in the liftical wi<br>sensitivity to the lowest 2 km lidaylig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| . How does                                                                                                            |                                                                                                                                                                                                     | and improve data assimilation in forecast and assessment models                                                                                                                                                                                                                                                                                                                                                                                                      | AOD                                                                                                | Ny.<br>A<70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1 -                                      | 1 0.05                                                                                                                                     |                                                                                                                            | Observe total aerosol; aerosol purce<br>and transport; climate forcing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| intercontinental<br>transport affect air                                                                              | Synthesize the GEO-CAPE measurements with<br>information from in-situ and ground-based<br>remote sensing networks to construct an                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NO2 Durly,                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | 6 ×10 <sup>15</sup> 1×10 <sup>15</sup>                                                                                                     |                                                                                                                            | Distinguish background from en polluted scenes; atmospheric che sist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| quality?                                                                                                              |                                                                                                                                                                                                     | enhanced observing system [], 2, 3, 4, 5, 6]                                                                                                                                                                                                                                                                                                                                                                                                                         | Additi                                                                                             | atmosph<br>Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                                                                                                            | s over Land.                                                                                                               | Coastal areas, baseline only: 🖪 t 👔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1                                                                                                                     |                                                                                                                                                                                                     | Leverage GEO-CAPE observations into an                                                                                                                                                                                                                                                                                                                                                                                                                               | Specie                                                                                             | resolut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | Typical<br>value <sup>2</sup>                                                                                                              | Precision <sup>2</sup>                                                                                                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| How do episodic                                                                                                       | U.                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                                                                                                            | 1×10 <sup>16</sup>                                                                                                         | Observe biogenic VOC emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| events, such as                                                                                                       | J.                                                                                                                                                                                                  | integrated observing system including<br>geostationary satellites over Europe and Asia                                                                                                                                                                                                                                                                                                                                                                               | нсно.                                                                                              | 3/day, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            | 1.0x10 <sup>16</sup>                                                                                                                       |                                                                                                                            | expected to peak at midday; che str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| events, such as<br>wild fires, dust<br>outbreaks, and                                                                 | J.                                                                                                                                                                                                  | integrated observing system including<br>geostationary satellites over Europe and Asia<br>together with LEO satellites and suborbital                                                                                                                                                                                                                                                                                                                                | нсно <sup>,</sup><br>so2 <sup>,</sup>                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | 1.0x10 <sup>10</sup><br>1×10 <sup>10</sup>                                                                                                 | 1×10 <sup>16</sup>                                                                                                         | expected to peak at midday; chearstr<br>Identify major pollution and voic and<br>emissions; atmospheric chemit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| events, such as<br>wild fires, dust                                                                                   |                                                                                                                                                                                                     | integrated observing system including<br>geostationary satellites over Europe and Asia<br>together with LEO satellites and suborbital<br>platforms for assessing the hemispheric transport<br>(1, 2, 3, 4, 5, 5)                                                                                                                                                                                                                                                     |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                                                                                                            | 1×10 <sup>16</sup><br>20 ppbv                                                                                              | expected to peak at midday; che str<br>Identify major pollution and voic sic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| events, such as<br>wild fires, dust<br>outbreaks, and<br>volcanic eruptions,<br>affect atmospheric<br>composition and |                                                                                                                                                                                                     | integrated observing system including<br>geostationary satellites over Europe and Asia<br>together with LEO satellites and suborbital<br>platforms for assessing the hemispheric transport<br><b>1</b> , 2, 3, <b>4</b> , 5, <b>5</b><br>Integrate observations from GEO-CAPE and<br>other platforms into models to improve                                                                                                                                          | SO2*                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | 1×10 <sup>16</sup>                                                                                                                         | 1×10 <sup>16</sup><br>20 ppbv<br>0-2 km:                                                                                   | expected to peak at midday; che est<br>Identify major pollution and voice of<br>emissions; atmospheric chemit<br>Observe anthropogenic and regard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| events, such as<br>wild fires, dust<br>outbreaks, and<br>volcanic eruptions,<br>affect atmospheric                    |                                                                                                                                                                                                     | integrated observing system including<br>geostationary stellites over Europe and Asia<br>together with LEO satellites and suborbital<br>platforms for assessing the hemispheric transport<br><b>12 3</b> , <b>4</b> , <b>5</b> , <b>5</b><br>Integrate observations from GEO-CAPE and<br>other platforms into models to improve<br>representation of processes in the models and to<br>link the observed composition, and<br>radiative forcing to the emissions from | SO2*<br>CH4                                                                                        | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            | 1×10 <sup>16</sup><br>4 ×10 <sup>19</sup>                                                                                                  | 1×10 <sup>16</sup><br>20 ppbv                                                                                              | expected to peak at midday, chen str<br>Identify major pollution and voice of<br>emissions; atmospheric chemi-<br>Observe anthropogenic and expertail<br>emissions sources<br>Observe agricultural embrants<br>Detect VOC emissions erosol<br>formation, atmospheric chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| events, such as<br>wild fires, dust<br>outbreaks, and<br>volcanic eruptions,<br>affect atmospheric<br>composition and |                                                                                                                                                                                                     | integrated observing system including<br>geostationary satellites over Europe and Asia<br>together with LEO satellites and suborbital<br>platforms for assessing the hemispheric transport<br><b>1 2 3 4 5 5</b><br>Integrate observations from GEO-CAPE and<br>other platforms into models to improve<br>representation of processes in the models and to<br>link the observed composition, deposition, and                                                         | SO2*<br>CH4<br>NH3                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SZA<50                                     | 1×10 <sup>16</sup><br>4 x10 <sup>19</sup><br>2x10 <sup>16</sup>                                                                            | 1×10 <sup>16</sup><br>20 ppbv<br>0-2 km:<br>2ppbv                                                                          | expected to peak at midday, che str<br>Identify major pollution and voice a<br>emission; at inospheric chemic<br>Observe anthropogenic and e brail<br>emissions sources<br>Observe agricultural emission<br>Detect VOC emissions erosol<br>formation, atmospheric chemistry<br>Distinguish sources and dust from non-<br>UV abscript procession; atmate forcin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| events, such as<br>wild fires, dust<br>outbreaks, and<br>volcanic eruptions,<br>affect atmospheric<br>composition and |                                                                                                                                                                                                     | integrated observing system including<br>geostationary stellites over Europe and Asia<br>together with LEO satellites and suborbital<br>platforms for assessing the hemispheric transport<br><b>12 3</b> , <b>4</b> , <b>5</b> , <b>5</b><br>Integrate observations from GEO-CAPE and<br>other platforms into models to improve<br>representation of processes in the models and to<br>link the observed composition, and<br>radiative forcing to the emissions from | SO2*<br>CH4<br>NH3<br>CHOCH                                                                        | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SZA<50                                     | 1×10 <sup>16</sup><br>4 x10 <sup>19</sup><br>2x10 <sup>16</sup><br>2x10 <sup>14</sup>                                                      | 1×10 <sup>10</sup><br>20 ppbv<br>0-2 km:<br>2ppbv<br>4×10 <sup>14</sup>                                                    | expected to peak at midday, che star<br>Identify major pollution and vice or<br>emissions, atmospheric chemistry<br>Observe anthropogenic and real<br>Observe agricultural embrans<br>Detect VOC emissions consol<br>formation, atmospheric chemistry<br>Distinguing and consols, climate forcin<br>Uvancer in prosols, climate forcin<br>Origination and sols, climate forcin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| events, such as<br>wild fires, dust<br>outbreaks, and<br>volcanic eruptions,<br>affect atmospheric<br>composition and |                                                                                                                                                                                                     | integrated observing system including<br>geostationary stellites over Europe and Asia<br>together with LEO satellites and suborbital<br>platforms for assessing the hemispheric transport<br><b>12 3</b> , <b>4</b> , <b>5</b> , <b>5</b><br>Integrate observations from GEO-CAPE and<br>other platforms into models to improve<br>representation of processes in the models and to<br>link the observed composition, and<br>radiative forcing to the emissions from | SO2*<br>CH4<br>NH3<br>CHOCH                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SZA<50                                     | 1×10 <sup>10</sup><br>4 x10 <sup>19</sup><br>2x10 <sup>10</sup><br>2x10 <sup>14</sup><br>1=0.05                                            | 1×10 <sup>10</sup><br>20 ppbv<br>0-2 km:<br>2ppbv<br>4×10 <sup>14</sup>                                                    | expected to peak at midday, che stat<br>identify major pollution and vice or<br>emissions, atmospheric chemis<br>Observe anthropogenic and chemis<br>Observe agricultural embrans<br>Detect VOC emissions consol<br>formation, atmospheric chemistry<br>Distormento attorne of dust from non-<br>UV short provide stols, climate forcin<br>Distormento attorne stols forcin<br>Distormento attorne stols rear/above clouds an<br>attorneowice; aerosol events<br>Determine plume height; large scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| events, such as<br>wild fires, dust<br>outbreaks, and<br>volcanic eruptions,<br>affect atmospheric<br>composition and |                                                                                                                                                                                                     | integrated observing system including<br>geostationary stellites over Europe and Asia<br>together with LEO satellites and suborbital<br>platforms for assessing the hemispheric transport<br><b>12 3</b> , <b>4</b> , <b>5</b> , <b>5</b><br>Integrate observations from GEO-CAPE and<br>other platforms into models to improve<br>representation of processes in the models and to<br>link the observed composition, and<br>radiative forcing to the emissions from | SO2*<br>CH4<br>NH3<br>CHOCHC<br>AAC                                                                | Parties and the second | 52A<50<br>2A<br>52A<70<br>52A<70           | 1×10 <sup>10</sup><br>4 x10 <sup>19</sup><br>2x10 <sup>14</sup><br>2x10 <sup>14</sup><br>14=0.05<br>-1 - 43=1<br>Variable                  | 1×10 <sup>10</sup><br>20 ppbv<br>0-2 km:<br>2ppbv<br>4×10 <sup>14</sup><br>0.02<br>0.1<br>1 km                             | expected to peak at midday, che sith<br>Identify major pollution and voice or<br>emissions; atmospheric chemistry<br>Observe anthropogenic and rule and<br>Observe agricultural emissions<br>ources<br>Detect VOC emissions ended<br>formation, atmospheric chemistry<br>Distinguish avia and dust from non-<br>UV absorbing and solitistry<br>Observes and dust from non-<br>UV absorbing and solitistry<br>Observes and dust from non-<br>UV absorbing and solitistry<br>Determine plume height; large scale<br>transport, conversions from AOD to P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| wild fires, dust<br>outbreaks, and<br>volcanic eruptions,<br>affect atmospheric<br>composition and                    |                                                                                                                                                                                                     | integrated observing system including<br>geostationary stellites over Europe and Asia<br>together with LEO satellites and suborbital<br>platforms for assessing the hemispheric transport<br><b>12 3</b> , <b>4</b> , <b>5</b> , <b>5</b><br>Integrate observations from GEO-CAPE and<br>other platforms into models to improve<br>representation of processes in the models and to<br>link the observed composition, and<br>radiative forcing to the emissions from | SO2*<br>CH4<br>NH3<br>CHOCHC<br>AAC                                                                | Parties and the second | SZA<50<br>SZA<70<br>SZA<70<br>rements      | 1×10 <sup>10</sup><br>4×10 <sup>19</sup><br>2×10 <sup>16</sup><br>2×10 <sup>14</sup><br>1=005<br>-1 =40<br>Variable<br>( <i>F.H. J. J.</i> | 1×10 <sup>16</sup><br>20 ppbv<br>0-2 km:<br>2ppbv<br>4×10 <sup>14</sup><br>0.02<br>1 km<br>X baseline                      | expected to peak at midday, che stat<br>I dentify major pollution and vice or<br>emissions, atmospheric chemistry<br>Observe anthropogenic and refar<br>Observe agricultural embrans<br>Detect VOC emissions vices<br>I peter VOC emissions vices<br>I present vice and dust from non-<br>Oversions and state of the state<br>of the state of the state of the state of the state<br>of the state of the state of the state of the state<br>of the state of the state of the state of the state<br>of the state of the state of the state of the state<br>of the state of the state of the state of the state of the state<br>of the state of the state of the state of the state of the state<br>of the state of the state of the state of the state of the state<br>of the state of the state of the state of the state of the state<br>of the state of the state |
| events, such as<br>wild fires, dust<br>outbreaks, and<br>volcanic eruptions,<br>affect atmospheric<br>composition and |                                                                                                                                                                                                     | integrated observing system including<br>geostationary stellites over Europe and Asia<br>together with LEO satellites and suborbital<br>platforms for assessing the hemispheric transport<br><b>12 3</b> , <b>4</b> , <b>5</b> , <b>5</b><br>Integrate observations from GEO-CAPE and<br>other platforms into models to improve<br>representation of processes in the models and to<br>link the observed composition, and<br>radiative forcing to the emissions from | SO2*<br>CH4<br>NH3<br>CHOCHC<br>AAC                                                                | Parties and the second | ZA<50<br>ZA<br>SZA<70<br>SZA<70<br>rements | 1×10 <sup>10</sup><br>4 x10 <sup>19</sup><br>2x10 <sup>14</sup><br>2x10 <sup>14</sup><br>14=0.05<br>-1 - 43=1<br>Variable                  | 1×10 <sup>16</sup><br>20 ppbv<br>0-2 km:<br>2ppbv<br>4×10 <sup>14</sup><br>0.02<br>1 km<br>1 km<br>1 baseline<br>Over open | expected to peak at midday, che star<br>Identify major pollution and voice or<br>emissions; atmospheric chemistry<br>Observe anthropogenic and re trail<br>Observe agricultural emissions<br>Detect VOC emissions entrol<br>Iostingunis and chemistry<br>Ustingunis and chemistry<br>Observe consols; climate forcin<br>UV absorb arrange clude an<br>automotifice; aerosol events<br>Determine plume height; large scale<br>transport; conversions from AOD to P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

### Infrared species

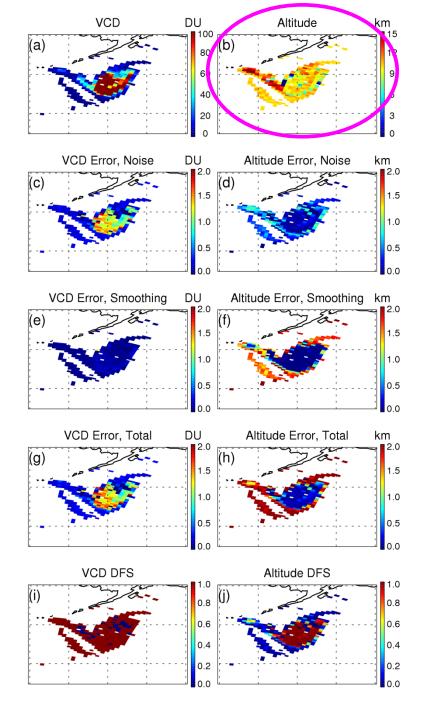
| Atmospheric measurements over Land/Coastal areas, baseline and threshold: [A to K] |                             |                               |                                                                   |                                                                                                                                                                    |  |
|------------------------------------------------------------------------------------|-----------------------------|-------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Species                                                                            | Time<br>resolution          | Typical<br>value <sup>2</sup> | Precision <sup>2</sup>                                            | Description                                                                                                                                                        |  |
| 03                                                                                 | Hourly,<br>SZA<70           | 9 x10 <sup>18</sup>           | 0-2 km: 10 ppbv<br>2km–tropopause:<br>15 ppbv<br>Stratosphere: 5% | Observe O3 with two pieces of<br>information in the troposphere with<br>sensitivity to the lowest 2 km for surface<br>AQ; also transport, climate forcing          |  |
| co                                                                                 | Hourly,<br>day and<br>night | 2 x10 <sup>18</sup>           | 0-2 km: 20ppbv<br>2km–tropopause:<br>20 ppbv                      | Track anthropogenic and biomass<br>burning plumes; observe CO with two<br>pieces of information in the vertical with<br>sensitivity to the lowest 2 km in daylight |  |
| AOD                                                                                | Hourly,<br>SZA<70           | 0.1 – 1                       | 0.05                                                              | Observe total aerosol; aerosol sources<br>and transport; climate forcing                                                                                           |  |
| NO2                                                                                | Hourly,<br>SZA<70           | 6 x10 <sup>15</sup>           | 1×10 <sup>15</sup>                                                | Distinguish background from enhanced/<br>polluted scenes; atmospheric chemistry                                                                                    |  |
| Additional atmospheric measurements over Land/Coastal areas, baseline only: A to K |                             |                               |                                                                   |                                                                                                                                                                    |  |

Time Typical Precision<sup>2</sup> Species Description value<sup>2</sup> resolution Observe biogenic VOC emissions, нсно 1.0x10<sup>16</sup> 1×10<sup>16</sup> 3/day, SZA<50 expected to peak at midday; chemistry Identify major pollution and volcanic SO2\* 1×10<sup>16</sup> 1×10<sup>16</sup> 3/day, SZA<50 emissions; atmospheric chemistry Observe anthropogenic and natural CH4 4 x10<sup>19</sup> 2/day 20 ppbv emissions sources 0-2 km: 2x10<sup>16</sup> NH3 2/day Observe agricultural emissions 2ppbv Detect VOC emissions, aerosol 2x10<sup>14</sup> CHOCHO\*  $4 \times 10^{14}$ 2/day formation, atmospheric chemistry Distinguish smoke and dust from non-AAOD Hourly, SZA<70 0 – 0.05 0.02 UV absorbing aerosols; climate forcing Detect aerosols near/above clouds and 0.1 Hourly, SZA<70 -1 - +5 ΑI over snow/ice: aerosol events Determine plume height; large scale AOCH 1 km Hourly, SZA<70 Variable transport, conversions from AOD to PM

**Ultraviolet**/ visible species (GOME, SCIA, OMI, OMPS, **TEMPO**, etc.)

# TEMPO

### Baseline and threshold data products




| Species/Products                                                         | <b>Required Precision</b>                       | Temporal Revisit |
|--------------------------------------------------------------------------|-------------------------------------------------|------------------|
| 0-2 km O <sub>3</sub><br>(Selected Scenes)<br><mark>Baseline only</mark> | 10 ppbv                                         | 2 hour           |
| Tropospheric O <sub>3</sub>                                              | 10 ppbv                                         | 1 hour           |
| Total O <sub>3</sub>                                                     | 3%                                              | 1 hour           |
| Tropospheric NO <sub>2</sub>                                             | $1.0 \times 10^{15}$ molecules cm <sup>-2</sup> | 1 hour           |
| Tropospheric H <sub>2</sub> CO                                           | $1.0 \times 10^{16}$ molecules cm <sup>-2</sup> | 3 hour           |
| Tropospheric SO <sub>2</sub>                                             | $1.0 \times 10^{16}$ molecules cm <sup>-2</sup> | 3 hour           |
| Tropospheric C <sub>2</sub> H <sub>2</sub> O <sub>2</sub>                | $4.0 \times 10^{14}$ molecules cm <sup>-2</sup> | 3 hour           |
| Aerosol Optical Depth                                                    | 0.10                                            | 1 hour           |

- Minimal set of products sufficient for constraining air quality
- Across Greater North America (GNA): 18°N to 58°N near 100°W, 67°W to 125°W near 42°N
- Data products at urban-regional spatial scales
  - Baseline ≤ 60 km<sup>2</sup> at center of Field Of Regard (FOR)
  - Threshold ≤ 300 km<sup>2</sup> at center of FOR
- Temporal scales to resolve diurnal changes in pollutant distributions
- Geolocation uncertainty of less than 4 km
- Mission duration, subject to instrument availability
  - Baseline 20 months
  - Threshold 12 months

### C. Nowlan *et al.*, JGR 2011: GOME-2 SO<sub>2</sub> from optimal estimation

Figure 7. (a, b) SO<sub>2</sub> vertical column density and retrieved SO<sub>2</sub> plume altitude; and their (c, d) measurement noise error; (e, f) smoothing error, (g, h) total solution error; and (i, j) the retrieval degrees-of-freedom for signal (DFS) for the Mt. Kasatochi SO<sub>2</sub> plume on 9 August 2008 for SO2 VCD greater than 1 DU, using  $z_{ap}$ =10 km and  $\varepsilon_{zap}$ =2 km.





- 2. How do physical, chemical, and dynamical **processes** determine tropospheric composition and air quality over scales ranging from urban to continental, diurnally to seasonally?
- 3. How does air pollution drive **climate** forcing and how does climate change affect air quality on a continental scale?
- 4. How can observations from space improve **air quality forecasts and assessments** for societal benefit?
- 5. How does intercontinental transport affect air quality?
- 6. How do episodic events, such as wild fires, dust outbreaks, and volcanic eruptions, affect atmospheric composition and air quality?

# Air quality and health in the sector of the

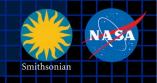
TEMPO's hourly measurements allow better understanding of the complex chemistry and dynamics that drive air quality on short timescales. The density of TEMPO data is ideally suited for data assimilation into chemical models for both air quality forecasting and for better constraints on emissions that lead to air quality exceedances. Planning is underway to combine TEMPO with regional air quality models to improve EPA air quality indices and to directly supply the public with near real time pollution reports and forecasts through website and mobile applications. As a case study, an OSSE for the Intermountain West was performed to explore the potential of geostationary ozone measurements from TEMPO to improve monitoring of ozone exceedances and the role of background ozone in causing these exceedances (Zoogman et al. 2014).

## **TEMPO** instrument concept

#### • Measurement technique

DN

- Imaging grating spectrometer measuring solar backscattered Earth radiance
- Spectral band & resolution: 290-490 + 540-740 nm @ 0.6 nm FWHM, 0.2 nm sampling
- 2 2-D, 2k×1k, detectors image the full spectral range for each geospatial scene

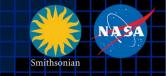

#### • Field of Regard (FOR) and duty cycle

- Mexico City/Yucatan, Cuba to the Canadian oil sands, Atlantic to Pacific
- Instrument slit aligned N/S and swept across the FOR in the E/W direction, producing a radiance map of Greater North America in one hour

#### Spatial resolution

- 2.1 km N/S × 4.7 km E/W native pixel resolution (9.8 km<sup>2</sup>)
- Co-add/cloud clear as needed for specific data products
- Standard data products and sampling rates
  - Most sampled hourly, including eXceL O<sub>3</sub> (troposphere, PBL)
  - NO<sub>2</sub>, H<sub>2</sub>CO, C<sub>2</sub>H<sub>2</sub>O<sub>2</sub>, SO<sub>2</sub> sampled hourly (average results for  $\geq$  3/day if needed)
  - Nominal spatial resolution 8.4 km N/S × 4.7 km E/W at center of domain (can often measure 2.1 km N/S × 4.7 km E/W)
  - Measurement requirements met up to 50° for SO<sub>2</sub>, 70° SZA for other products

### Traffic, biomass burning




Morning and evening higher-frequency scans The optimized data collection scan pattern during mornings and evenings provides multiple advantages for addressing TEMPO science questions. The increased frequency of scans coincides with peaks in vehicle miles traveled on each coast.

**Biomass burning** The unexplained variability in ozone production from fires is of particular interest. The suite of NO<sub>2</sub>, H<sub>2</sub>CO,  $C_2H_2O_2$ , O<sub>3</sub>, H<sub>2</sub>O, and aerosol measurements from TEMPO is well suited to investigating how the chemical processing of primary fire emissions effects the secondary formation of VOCs and ozone. For particularly important fires it is possible to command special TEMPO observations at even shorter than hourly revisit time, as short as 10 minutes.

# TEMPO

# NO<sub>x</sub> studies



**Lightning NO**<sub>x</sub> Interpretation of satellite measurements of tropospheric NO<sub>2</sub> and O<sub>3</sub>, and upper tropospheric HNO<sub>3</sub> lead to an overall estimate of  $6 \pm 2$  Tg N y<sup>-1</sup> from lightning [Martin et al., 2007]. TEMPO measurements, including tropospheric NO<sub>2</sub> and O<sub>3</sub>, can be made for time periods and longitudinal bands selected to coincide with large thunderstorm activity, including outflow regions, with fairly short notice.

**Soil NO<sub>x</sub>** Jaeglé et al. [2005] estimate 2.5 - 4.5 TgN y<sup>-1</sup> are emitted globally from nitrogen-fertilized soils, still highly uncertain. The US a posteriori estimate for 2000 is  $0.86 \pm 1.7$  TgN y<sup>-1</sup>. For Central America it is  $1.5 \pm 1.6$  TgN y<sup>-1</sup>. They note an underestimate of NO release by nitrogen-fertilized croplands as well as an underestimate of rain-induced emissions from semiarid soils.

TEMPO is able to follow the temporal evolution of emissions from croplands after fertilizer application and from rain-induced emissions from semi-arid soils. Higher than hourly time resolution over selected regions may be accomplished by special observations. Improved constraints on soil NO<sub>x</sub> emissions may also improve estimated of lightning NO<sub>x</sub> emissions [Martin *et al.* 2000].

# **Spectral indicators**

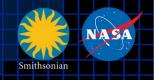
**Fluorescence and other spectral indicators** Solar-induced fluorescence (SIF) from chlorophyll over both land and ocean will be measured. In terrestrial vegetation, chlorophyll fluorescence is emitted at red to far-red wavelengths (~650-800 nm) with two broad peaks near 685 and 740 nm, known as the red and far-red emission features. Oceanic SIF is emitted exclusively in the red feature. SIF measurements have been used for studies of tropical dynamics, primary productivity, the length of the carbon uptake period, and drought responses, while ocean measurements have been used to detect red tides and to conduct studies on the physiology, phenology, and productivity of phytoplankton. TEMPO can retrieve both red and far-red SIF by utilizing the property that SIF fills in solar Fraunhofer and atmospheric absorption lines in backscattered spectra normalized by a reference (*e.g.*, the solar spectrum) that does not contain SIF.

TEMPO will also be capable of measuring **spectral indices developed for estimating foliage pigment contents and concentrations**. Spectral approaches for estimating pigment contents apply generally to leaves and not the full canopy. A single spectrally invariant parameter, the **Directional Area Scattering Factor** (DASF), relates canopy-measured spectral indices to pigment concentrations at the leaf scale.

**UVB** TEMPO measurements of daily UV exposures build upon heritage from OMI and TROPOMI measurements. Hourly cloud measurements from TEMPO allow taking into account diurnal cloud variability, which has not been previously possible. The OMI UV algorithm is based on the TOMS UV algorithm. The specific products are the downward spectral irradiance at the ground (in W m<sup>-2</sup>  $nm_{1}^{-1}$ ) and the erythemally weighted irradiance (in W m<sup>-2</sup>).



Volcanic **SO**<sub>2</sub> (column amount and plume altitude is a potential research product. Diurnal out-going **shortwave radiation and cloud forcing** is a potential research product.

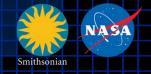

Nighttime "**city lights**" products, which represent anthropogenic activities at the same spatial resolution as air quality products, may be produced twice per day (late evening and early morning) as a research product. Meeting TEMPO measurement requirements for NO<sub>2</sub> (visible) implies the sensitivity for city lights products over the CONUS within a 2-hour period at  $2\times4.5$  km<sup>2</sup> to  $1.1\times10^{-8}$  W cm<sup>-2</sup> sr<sup>-1</sup> µm<sup>-1</sup>.

Several additional first-measurement molecules are being studied.

 $H_2O$  will be produced at launch from the 7v vibrational polyad at 445 nm. Water vapor retrieved from the visible spectrum has good sensitivity to the planetary boundary layer, since the absorption is optically thin, and is available over both the land and ocean. The hourly coverage of TEMPO will greatly improve the knowledge of water vapor's diurnal cycle and make rapid variations in time readily observed.

# DN

# Halogens




**BrO** will be produced at launch, assuming stratospheric AMFs. Scientific studies will correct retrievals for tropospheric content. IO was first measured from space by SAO using SCIAMACHY spectra [Saiz-Lopez et al., 2007]. It will be produced as a scientific product, particularly for coastal studies, assuming AMFs appropriate to lower tropospheric loading.

The atmospheric chemistry of halogen oxides over the ocean, and in particular in coastal regions, can play important roles in ozone destruction, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei [Saiz-Lopez and von Glasow, 2012]. The budgets and distribution of reactive halogens along the coastal areas of North America are poorly known. Therefore, providing a measure of the budgets and diurnal evolution of coastal halogen oxides is necessary to understand their role in atmospheric photochemistry of coastal regions. Previous ground-based observations have shown enhanced levels (at a few pptv) of halogen oxides over coastal locations with respect to their background concentrations over the remote marine boundary layer [Simpson et al., 2015]. Previous global satellite instruments lacked the sensitivity and spatial resolution to detect the presence of active halogen chemistry over mid-latitude coastal areas. TEMPO observations together with atmospheric models will allow examination of the processes linking ocean halogen emissions and their potential impact on the oxidizing capacity of coastal environments of North America.

TEMPO also performs hourly measurements of one of the world's largest salt lakes: the Great Salt Lake in Utah. Measurements over Salt Lake City show the highest concentrations of BrO over the globe. Hourly measurement at a high spatial resolution can improve understanding of BrO production in salt lakes. 26





#### NO<sub>2</sub>, SO<sub>2</sub>, H<sub>2</sub>CO, C<sub>2</sub>H<sub>2</sub>O<sub>2</sub> vertical columns

Direct fitting to TEMPO radiances

AMF-corrected reference spectra, Ring effect, etc.

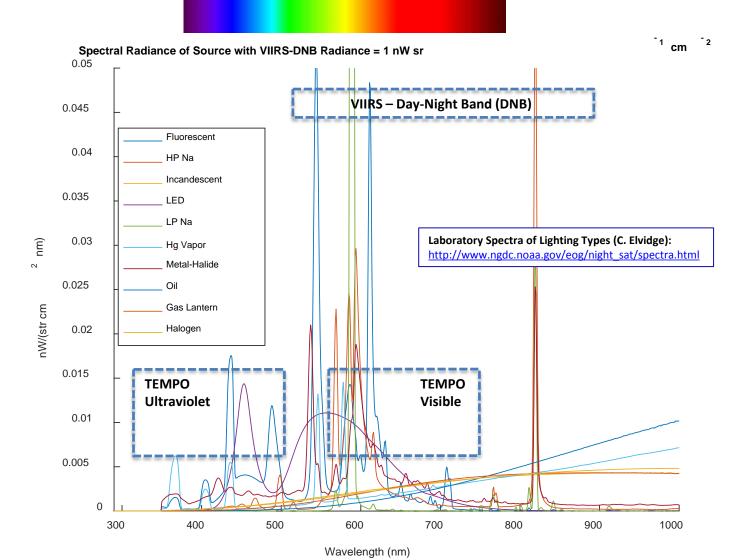
DOAS option available to trade more speed for less accuracy, if necessary Research products could include  $H_2O$ , BrO, OCIO, IO

#### O<sub>3</sub> profiles, tropospheric O<sub>3</sub>

eXceL optimal-estimation method developed @ SAO for GOME, OMI May be extended to  $SO_2$ , especially volcanic  $SO_2$ 

**TOMS-type ozone retrieval included for heritage** 

Aerosol products from OMI heritage: AOD, AAOD, Aerosol Index Advanced/improved products likely developed @ GSFC, U. Nebraska Cloud Products from OMI heritage: CF, CTP


Advanced/improved products likely developed @ GSFC

#### UVB research product based on OMI heritage (FMI, GSFC)

#### Nighttime research products include city lights

9/26/18

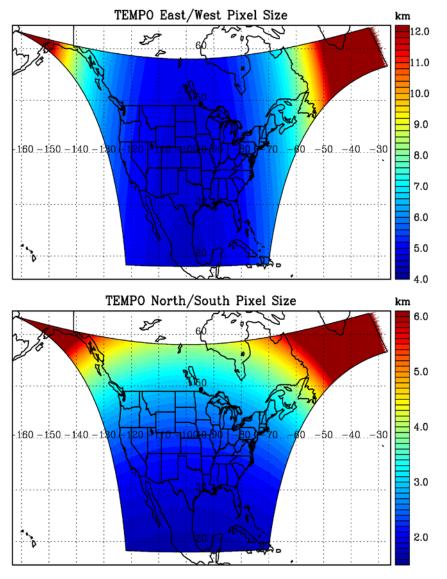
# City lights spectroscopic signatures



PO

NASA




## **Pre MLI installation**



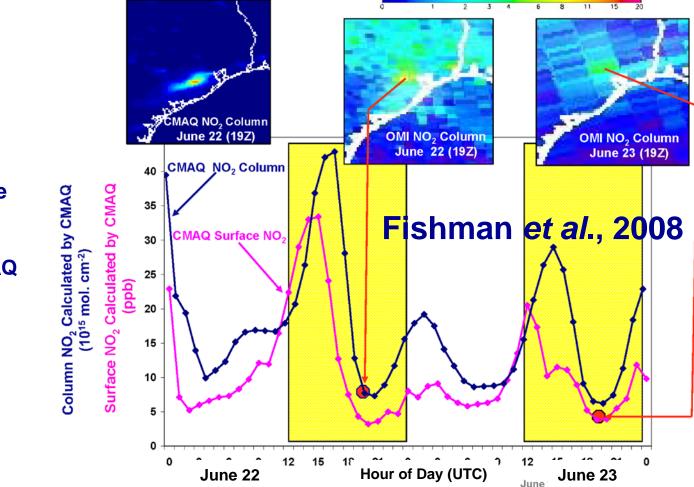
# Heater panels and harnesses

NASA

**TEMPO** footprint (GEO at 100° W)



| Location           | N/S<br>(km) | E/W<br>(km) | GSA<br>(km²) |
|--------------------|-------------|-------------|--------------|
| 36.5°N, 100°W      | 2.11        | 4.65        | 9.8          |
| Washington, DC     | 2.37        | 5.36        | 11.9         |
| Seattle            | 2.99        | 5.46        | 14.9         |
| Los Angeles        | 2.09        | 5.04        | 10.2         |
| Boston             | 2.71        | 5.90        | 14.1         |
| Miami              | 1.83        | 5.04        | 9.0          |
| Mexico City        | 1.65        | 4.54        | 7.5          |
| Canadian tar sands | 3.94        | 5.05        | 19.2         |


Assumes 2000 N/S pixels

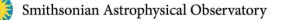
# For GEO at 80°W, pixel size at 36.5°N, 100°W is 2.2 km × 5.2 km.

NASA

# Why geostationary? High temporal and spatial resolution

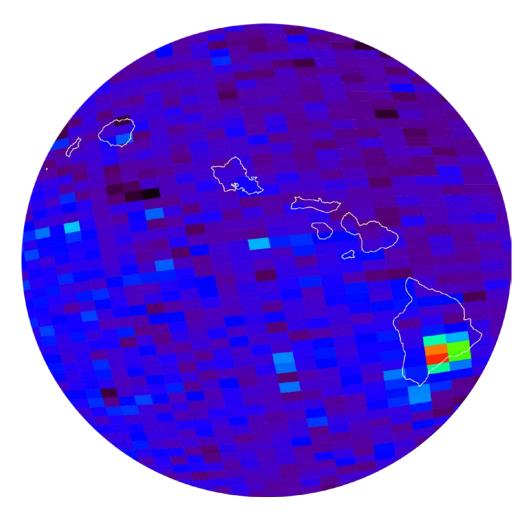
Column NO<sub>2</sub> (10<sup>15</sup> mol. cm<sup>-2</sup>)




LEO observations provide limited information on rapidly varying emissions, chemistry, & transport

GEO will provide observations at temporal and spatial scales highly relevant to air quality processes

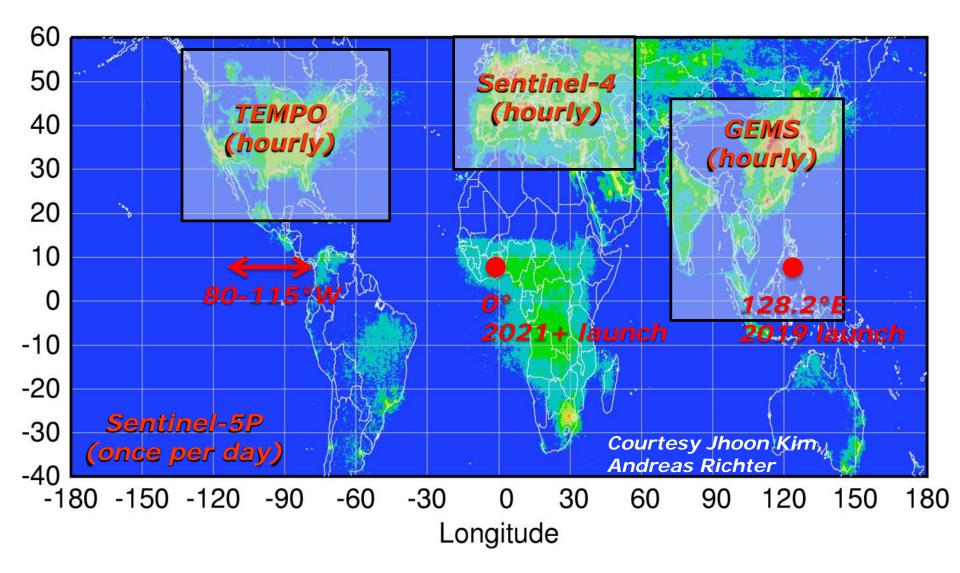
Hourly NO<sub>2</sub> surface concentration and integrated column calculated by CMAQ air quality model: Houston, TX, June 22-23, 2005 NASA


### **\_EO** measurement capability

A full, minimally-redundant, set of polluting gases, plus aerosols (GSFC) and clouds (GSFC) is now measured to very high precision from satellites. Ultraviolet and visible spectroscopy of backscattered radiation provides O<sub>3</sub> (including profiles and tropospheric O<sub>3</sub>), NO<sub>2</sub> (for NO<sub>x</sub>), H<sub>2</sub>CO and  $C_2H_2O_2$  (for VOCs),  $SO_2$ ,  $H_2O$ ,  $O_2$ ,  $O_2-O_2$ ,  $N_2$  and O<sub>2</sub> Raman scattering, and halogen oxides (BrO, CIO, IO, OCIO). Satellite spectrometers we planned since 1985 began making these measurements in 1995. 32






# **Volcanic (and anthropogenic)** SO<sub>2</sub>





Kilauea activity, source of the VOG event in Honolulu on 9 November 2004

## Global pollution monitoring constellation

