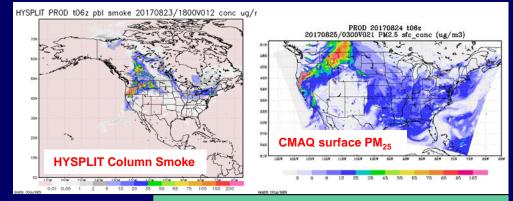
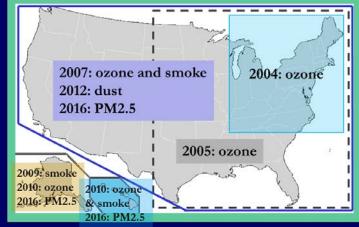
Using VIIRS and GOES-16 ABI Aerosol Data to Evaluate NAQFC Models

Ho-Chun Huang^{1,2}, **Jeff McQueen**², Perry Shafran^{1,2}, Jianping Huang^{1,2}, Li Pan^{1,2}, Partha Bhattacharjee^{1,2}, Jack Kain², Youhua Tang^{3,4}, Pius Lee³, Ivanka Stajner⁵, Jose Tirado-Delgado^{5,6}

¹ I.M. Systems Group, Inc.,² NOAA NWS/National Centers for Environmental Prediction,³ NOAA Air Resources Laboratory,⁴ University of Maryland/Cooperative Institute for Climate and Satellites,⁵ NOAA NWS/Office of Science and Technology Integration,⁶ Syneren Technologies

Outline


- The NWS National Air Quality Forecast Capability (NAQFC)
- NAQFC applications using NESDIS satellite aerosol products at the NCEP
- NAQFC model evaluation/verification with the NCEP FVS and METplus
- The wildfire smoke PM₂₅ case study in August 2018



The NWS National Air Quality Forecast Capability (NAQFC)

- The NAQFC missions are
 - to provide general public air quality information in their neighborhood (http://airquality.weather.gov/)
 - to provide guidance for state and local air quality forecasters who issue health warnings when the public is at risk due to deteriorated air quality
- The NAQFC forecasting systems
 - the regional AQM based on U.S. EPA
 Community Multi-scale Air Quality
 Modeling System (CMAQ v.5.0.2; Stajner et al. 2012; Lee et al. 2017), and
 - The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT; Rolph et al 2009).

 The CMAQ has provided ozone-prediction guidance since 2004 and PM₂₅ guidance since 2016. HYSPLIT has provided smoke guidance since 2007 and dust guidance since 2012.

NESDIS Satellite Aerosol Products for NAQFC Applications at the NCEP

- Source functions for NAQFC
 - Fire detections of GOES, SNPP, and JPSS
 - HMS quality control → USFS BlueSky → PM₂₅ fire emission → HYSPLIT/Smoke and CMAQ/PM₂₅
 - NESDIS GBBEPx (FRP; Fire PM emissions) → NGAC and FV3GFS-CHEM (global and regional)
- Data assimilation
 - VIIRS AOD
 - NEMS GFS Aerosol Component (NGAC) global aerosol forecast system (Sarah Lu)
 - FV3GFS-CHEM global aerosol forecast system (in progress)
- NCEP near-real-time verification
 - VIIRS AOD
 - MODIS AOD
 - GOES-16 CONUS AOD and ADP (Beta)
- Air Quality case study
 - VIIRS AOD, Smoke/Dusk Mask, fire product, and cloud (IDEA; eIDEA)
 - MODIS AOD and cloud (IDEA)
 - GOES AOD, Smoke/Dusk mask, fire product, and cloud (IDEA; eIDEA; AerosolWatch)

NAQFC model evaluation – NCEP Near-real-time Verification

- NCEP FVS (operational) and NCAR METplus (in development)
 - EPA AirNow surface observations
 - Ozone and PM₂₅
 - NAQFC PM forecast of CMAQ and future FV3GFS-CHEM global and regional
 - Satellite aerosol products
 - VIIRS AOD
 - NAQFC PM forecast of NGAC, CMAQ, and future FV3GFS-CHEM global and regional
 - MODIS AOD
 - NGAC PM forecast
 - GOES-16 CONUS AOD and ADP
 - HYSPLIT Column Integrated Smoke Concentration
 - NAQFC PM forecast of CMAQ and future FV3GFS-CHEM global and regional.

METplus Aerosol Verification Development at the NCEP

- METplus is developed by NCAR DTC https://dtcenter.org/met/users/index.php.
- Unified verification tools for both meteorological, oceanic, and air quality variables at the NCEP.
- METviewer (accompany tool) displays and generates skill scores and presentation quality figure.
- Aerosol and chemical gases verification capability are in progress.
- Capability of GOES-16 AOD (using beta test data) ingestion has been built. NCEP is working on the verification script template of CMAQ AOD and HYSPLIT/Smoke concentration verification.
- Capability of VIIRS AOD ingestion is in development.

NCEP AQ verification web site – http://www.emc.ncep.noaa.gov/mmb/aq/

NOAA NAM 12 - CMAQ Ozone and PM Forecasts

OZONE/PM FORECAST GRAPHICS

- Operational CONUS/AK/HI Graphics : NDGD
- Experimental CONUS Graphics: <u>EMC</u>
- RT Grib2 Files mapped to NDGD grid
- AQM archive
- Description of AQM files
- NGAC Aerosol Forecasts
- NGAC verification
- NGAC grib2 files

North American Model (NAM)

- NAM CONUS Forecasts Graphics
 - NAM vs NAM Nest Forecast Comparisons
 - NAM Meteograms
 - North Amer Model (NAM) Graphics
 - NAM Documentation
 - NAM grib2 archive

NAM Verification

- Meteorology Error Time Series
- EMC NAM Spatial Maps
- · Real Time Mesoscale Analysis
- Precipitation verification

AQFC Change Log

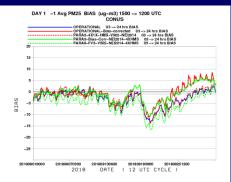
- Operational CONUS Run
- Experimental CONUS Run
- Operational Alaska/Hawaii Run
- . CMAQ GRIB Domain Definitions
- CMAQ GRIB Variable Definitions
- . CMAQ WMO File Header Information

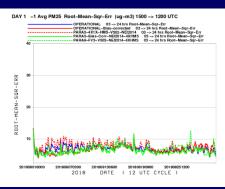
NAQFC VERIFICATION

- CMAQ
- Ozone & PM Error Time Series
- AOD Error Time Series
- HYSPLIT
 - Smoke forecasts vs GASP satellite
 - Dust and Smoke Error Time Series
 - HYSPLIT WCOSS Upgrade (July, 2013)

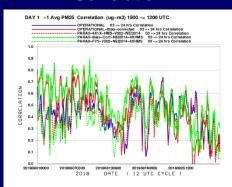
NAQFC Reports/Presentations

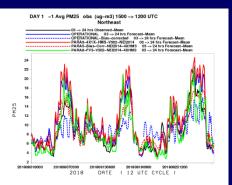
Smoke/Dust Forecast Tool relatd links


- NOAA/ARL Hysplit smoke forecasts and satellite verification
- NESDIS Hazard Mapping System (HMS) Fire location product
- NESDIS GOES Aerosol Satellite Product (GASP)
- NESDIS Fire Emission Product
- NASA Earth Observatory Fires Monitor
- USFS BlueSky Smoke Emissions and Forecasts

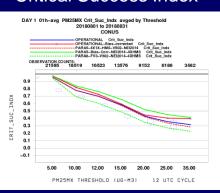

Example of NCEP FVS Products for Model Evaluation

Standard Verification Statistics

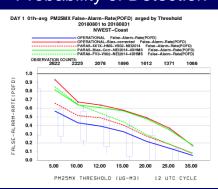



RMSE

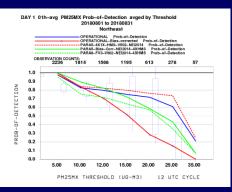
Correlation

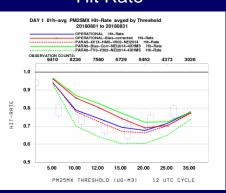


Obs vs Forecast Mean



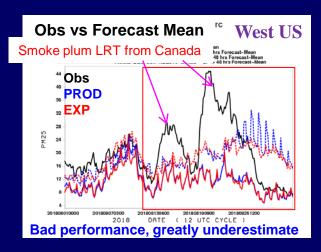
Threshold Verification Statistics

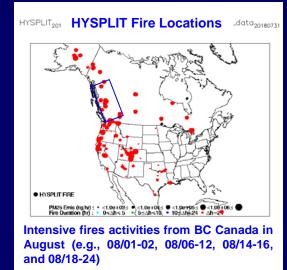

Critical Success Index


Probability of Detection

False Alarm Rate

Hit Rate

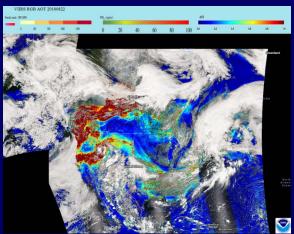



METplus will provide similar FVS products and more, such as Taylor's diagram 8

NAQFC model evaluation – Air Quality Case Study

Performance statistics sometime may not reveal the true problem of NAQFC models

- Air Quality Case Study
 - VIIRS AOD, Smoke/Dusk Mask, fire product, and Cloud (IDEA; eIDEA)
 - MODIS AOD and Cloud (IDEA)
 - GOES AOD, Smoke/Dusk Mask, fire product, and Cloud (IDEA; eIDEA; AerosolWatch)
 - Different aerosol models



- RGB product is used to identify heavy aerosol events and the timing of cloud presence.
- RGB animation is used to identify the source and <u>transport</u> of heavy aerosol, e.g., smoke and dust.
- AOD product is used to estimate the magnitude of events, and
- Smoke/Dust mask is used to distinguish the type of aerosols.

VIIRS RGB

VIIRS AOD

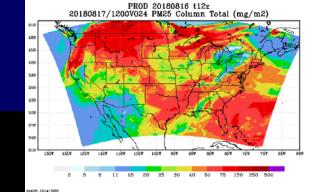
VIIRS Smoke/Dust Mask

GOES-16 true color animation

NOAA-20 Smoke Mask (no AOD)

AerosolWatch contains both GOES-16, SNPP and NOAA-20 data.

- Can not display Fire RGB, AOD Composite, and Fire product
- Can not save image of Dust RGB and AOD products



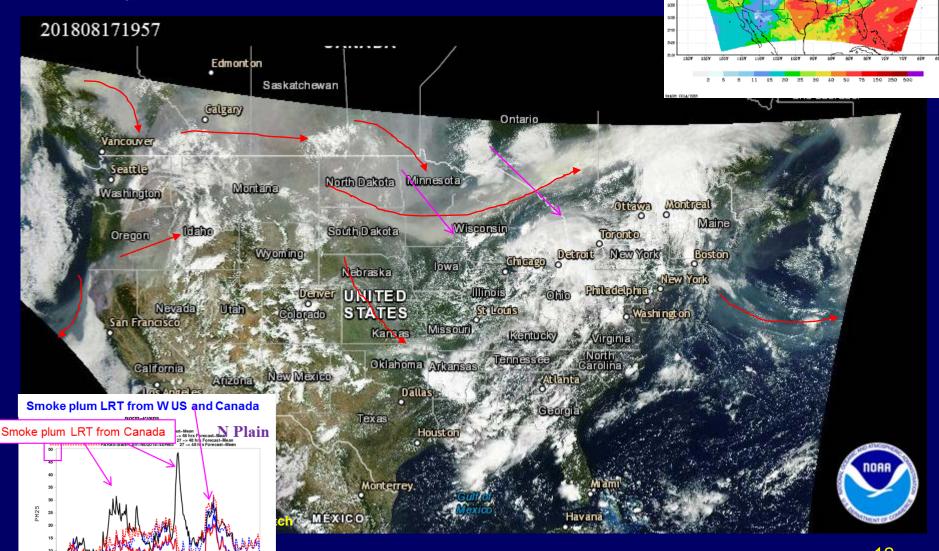
201808161957

ancouver

- Observed smoke plume from fires in Canada and N California moving eastward along Canadian border and toward Northern Plain and NE US.
- Observed Canadian smoke plume moves toward the NW US

Saskatchewan

CMAQ PM25 Column Total


- Note all column integrated products may reveal the transport of smoke plume but can not tell you whether it reach the surface or not (no vertical profile information).
- Coupled with PM₂₅ concentration time series of surface station can tell you when does upper air smoke plume reach the surface, e.g., downward motion behind frontal passage.

Edmonton

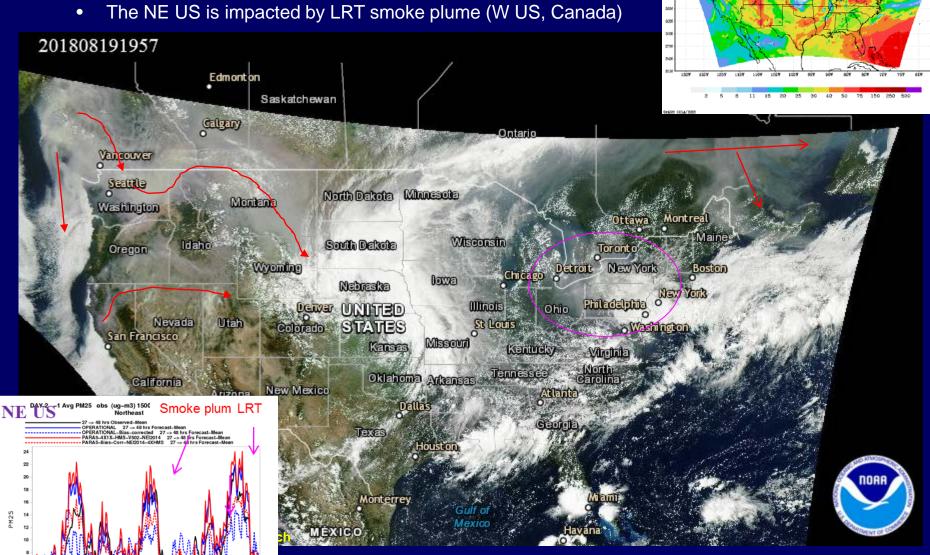
- Observed smoke plume from Canada moves eastward along Canadian border, with southward intrusion to Northern Plain
- Smoke plume from Canada moves southward toward the NW US
- Observed smoke plume from N California moves eastward to the Northern Plain

PROD 20180817 t12z 20180818/1200V024 PM25 Column Total (mg/m2)

DATE (12 UTC CYCLE)

Mainly due to Canadian fire impact

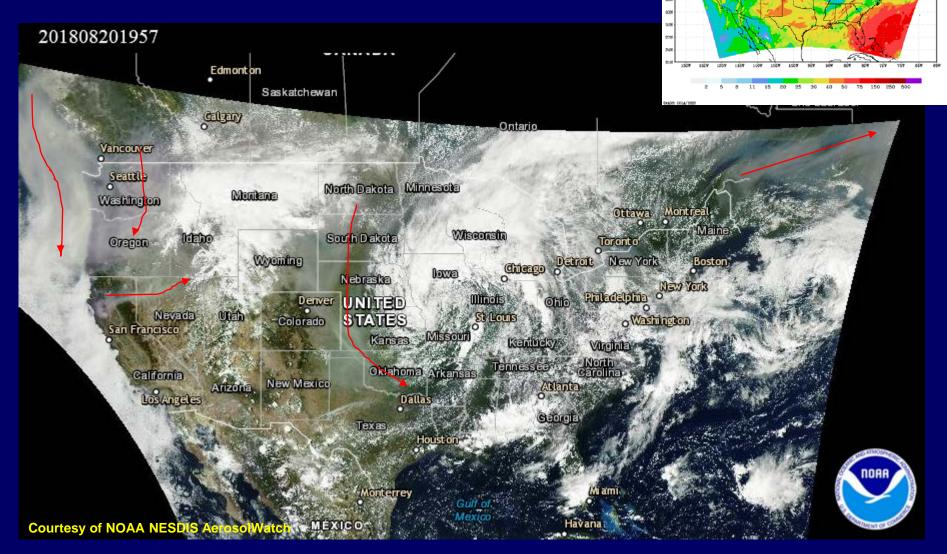
- Observed smoke plume from Canada moves southward and eastward toward the NW US, Northern Plain, and NE US
- Observed smoke plume from Oregon fires moves toward the Norther Plain



CMAQ PM25 Column Total

PROD 20180818 t12z 20180819/1200V024 PM25 Column Total (mg/m2)

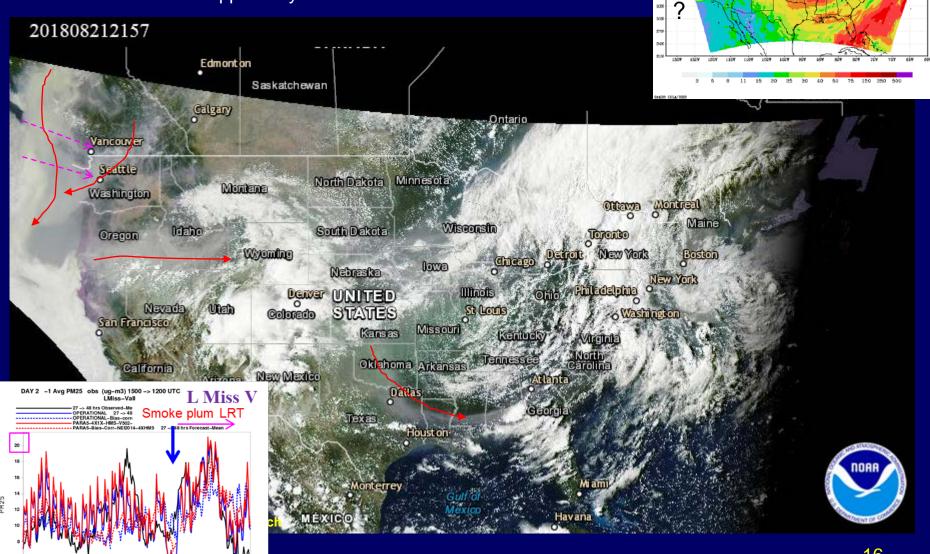
- Observed smoke plume from Canada moves southward toward the NW US and Northern Plain
- Eastward movement of smoke plume from N. California and Oregon fires



PROD 20180819 t12z 20180820/1200V024 PM25 Column Total (mg/m2)

DATE (12 UTC CYCLE)

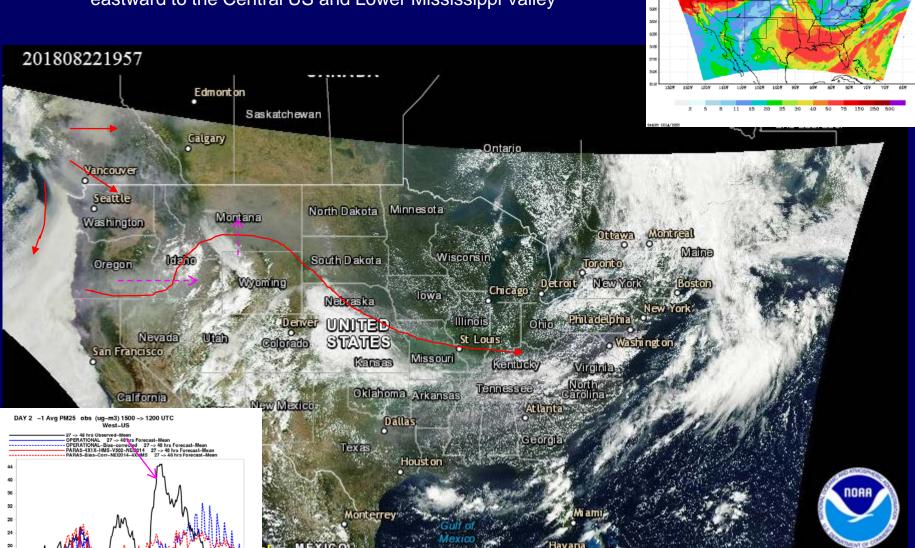
- Observed Canadian smoke plume movs southward along coastal area and toward the NW US.
- Observed smoke plume moved southward in Northern Plain
- Eastward movement of smoke plume from N Californian fires



PROD 20180820 t12z

20180821/1200V024 PM25 Column Total (mg/m2)

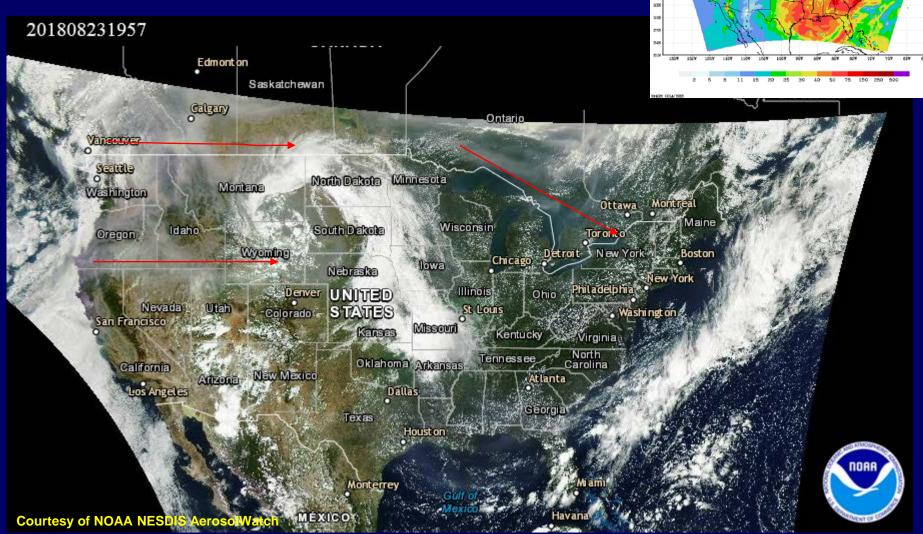
- Observed Canadian smoke plume moves southward along coastal area and toward NW US.
- Observed smoke plume from N California and Oregon fires move eastward (may join-force with Canadian smoke plume) to Lower Mississippi Valley



PROD 20180821 t12z 20180822/1200V024 PM25 Column Total (mg/m2)

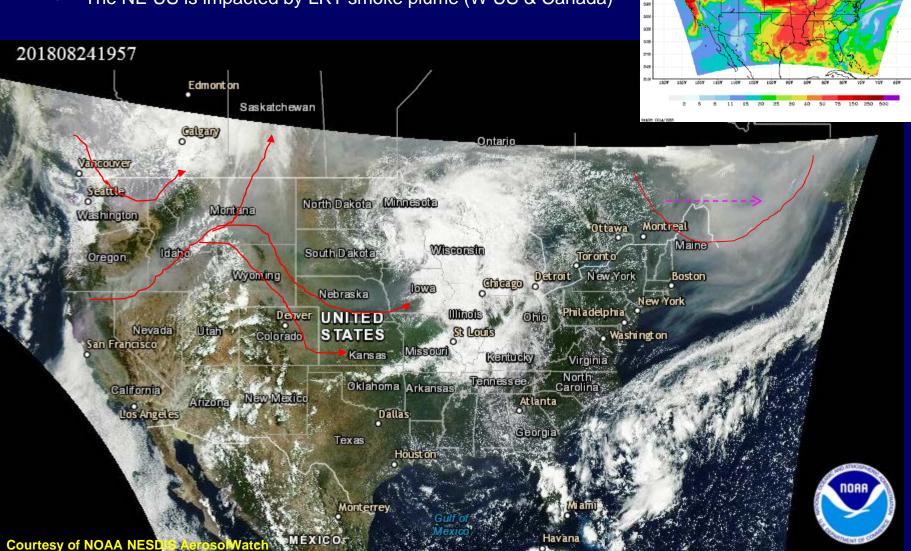
DATE (12 UTC CYCLE)

- Observed Canadian smoke plume move southward along coastal area and southeastward toward the NW US.
- Observed smoke plume from N Californian and Oregon move eastward to the Central US and Lower Mississippi Valley

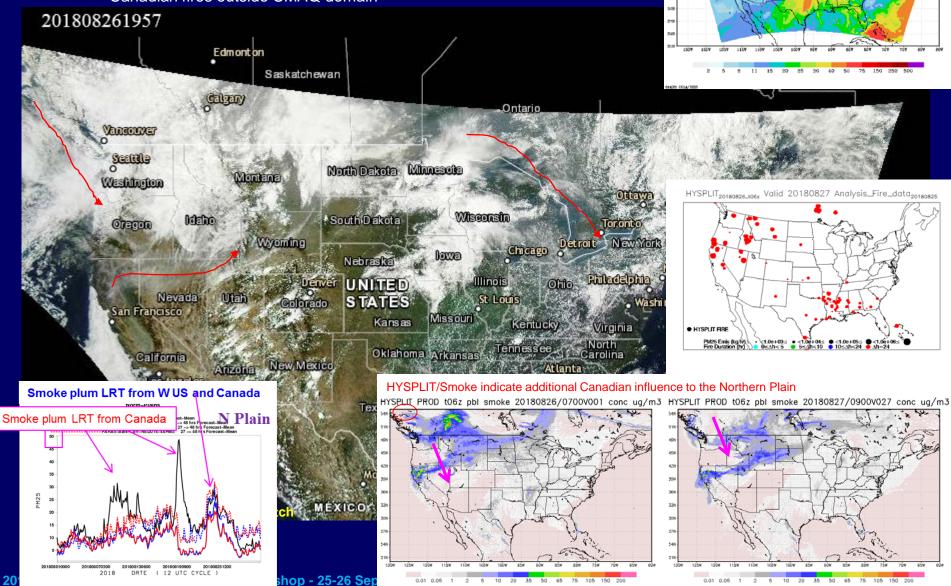


PROD 20180822 t12z 20180823/1200V024 PM25 Column Total (mg/m2)

DATE (12 UTC CYCLE)


- Observed Canadian smoke plume moves along Canadian border and toward NE US.
- Observed smoke plume from Oregon and N Californian fires move eastward to Northern Plain
- The NE US is impacted by LRT smoke plume (W US, Canada)

PROD 20180823 t12z 20180824/1200V024 PM25 Column Total (mg/m2)


- Observed Canadian smoke plume move southward to NW US
- Observed smoke plume from N Californian fires moves eastward to Canada and the Northern Plain
- The NE US is impacted by LRT smoke plume (W US & Canada)

PROD 20180824 t12z 20180825/1200V024 PM25 Column Total (mg/m2)

- Observed Canadian smoke plume moves south toward the NW US.
- Observed smoke plume from N Californian move eastward to the Northern Plain
- Observed Canadian smoke plume move to the NE US through Great Lake
- HYSPLIT dispersion transport indicates the impact to the western US from Canadian fires outside CMAQ domain

PROD 20180826 t12z 20180827/1200V024 PM25 Column Total (mg/m2)

Summary

- NESDIS satellite aerosol products are critical to operational NAQFC simulations conducted at the NCEP.
- Model evaluations performed at the NCEP are critical to provide better NAQFC AQ guidance to state AQ forecasters.
- Advance instruments such as VIIRS and ABI provide better spatial coverage and more accurate aerosol characteristics
- Collaboration with NESDIS/STAR aerosol group are in progress to incorporate GOES-16 and VIIRS aerosol data to METplus aerosol verification.