

GOES-R Program Overview

Dan Lindsey

NESDIS Senior Scientific Adviser to the GOES-R Program

AQPG Workshop College Park, MD 26 September 2018

A History of GOES Weather Satellites

2

1980

2006

GOES 1-3 NOAA's First GOES Spin-stabilized GOES 8-12 3-axis stabilized Simultaneous imaging, sounding 100% of time

GOES-R Series

Improved spectral, spatial and temporal resolution in imaging

Lightning mapping

Improved space weather monitoring

GOES-16 Update

- Became operational as GOES-East on December 18, 2017
- Continuing data product validation
 - 8 of 10 L1b data products achieved provisional status
 - 17 of 24 ABI L2 products achieved provisional

New products in development

- Sea & lake ice concentration, thickness, motion
- Aerosol particle size
- Blended Sea Surface Temperature
- Plan to switch ABI scan mode to 10 minute full disk mode after testing on GOES-17

2 8 JUN 17159 233053 00697 00736 01.00

CIRA/RAMMB

GOES-S Launch – March 1, 2018

- GOES-S was successfully launched on March 1, 2018, from Kennedy Space Center
- Reached geostationary orbit on March 12 and was renamed GOES-17
- Undergoing checkout from 89.5 W longitude until late October
- Will be moved to 137 W in Oct/Nov and later will become the operational GOES-W
- The ABI cooling system is not working properly, resulting in seasonal IR data issues; Tim's talk provide details

GOES-R Series Spacecraft

Solar Ultraviolet Imager (SUVI)

Lightning

Extreme Ultraviolet and X-Ray Irradiance Sensor (EXIS)

> Space Environment In-Situ Suite (SEISS)

> > Advanced

Baseline

Imager (ABI)

Magnetometer

Geostationary Lightning Mapper (GLM)

- First operational lightning mapper flown in geostationary orbit
- Detects <u>total lightning</u> activity across the Western Hemisphere: in-cloud, cloud-to-cloud, and cloud-to-ground
- Can lead to improved forecaster situational awareness and confidence resulting in more accurate and timely severe storm warnings

💦 Advanced Baseline Imager (ABI) 🏵

- Primary instrument on GOES-R series
- Spatial Resolution: 500-m to 2-km, depending on the channel
- Temporal: Scans the Full Disk every 15 minutes, and can scan smaller sectors (a few U.S. states) every 30 seconds!
- Spectral: 16 total bands
 - These improvements are a factor of 3 increase in spectral, a factor of 4 increase in spatial, and a factor of 5 increase in temporal resolutions compared to current GOES

Band	Channel (µm)	Function	GOES-15	
1	0.47	Blue		
2	0.64	Red	Yes (0.63µm)	1
3	0.86	Green (Veggie)		 - -
4	1.38	Cirrus		
5	1.61	Snow/Ice		
6	2.25	Cloud Particle Size		: :
7	3.90	Shortwave Window	Yes	
8	6.18	Upper-Level Water Vapor	Yes (6.48µm)	a and
9	6.95	Mid-Level Water Vapor		
10	7.34	Lower-Level Water Vapor		
11	8.50	Cloud Top Phase	-	
12	9.61	Ozone		
13	10.35	Clean IR Longwave Window		
14	11.20	IR Longwave Window Yes (10.7µm		
15	12.30	Dirty Longwave Window		
16	13.30	CO ₂ Longwave Infrared Yes		

1. Channel 1 Visible

Some aerosol particles effectively scatter visible wavelength radiation, particularly in the blue portion of the spectrum. Especially smoke, and the scattering is more in the forward direction.

This means smoke is easiest to detect when the sun-aerosolsatellite orientation is ideal, i.e., near sunrise and sunset

Channel Band (µm) 1 0.47		Function	GOES-15
		Blue	
2	0.64	Red	Yes (0.63µm)
3	0.86	Green (Veggie)	
4	1.38	Cirrus	
5	1.61	Snow/Ice	
6	2.25	Cloud Particle Size	-
7	3.90	Shortwave Window	Yes
8	6.18	Upper-Level Water Vapor	Yes (6.48µm)
9	6.95	Mid-Level Water Vapor	
10	7.34	Lower-Level Water Vapor	
11	8.50	Cloud Top Phase	
12	9.61	Ozone	
13	10.35	Clean IR Longwave Window	
14	11.20	IR Longwave Window	Yes (10.7µm)
15	12.30	Dirty Longwave Window	
16	13.30	CO ₂ Longwave Infrared	Yes

2. True Color Imagery

We don't have a green band, but CIRA has developed a way to approximate the green component using info from the Himawari AHI

True color imagery allows for easily distinguishing aerosols by color, i.e., brown dust, blueish smoke, gray volcanic ash, etc.

More on this later

Channel Band (µm)		Function	GOES-15
1	0.47	Blue	
2	0.64	Red	Yes (0.63µm)
3	0.86	Green (Veggie)	
4	1.38	Cirrus	
5	1.61	Snow/Ice	
6	2.25	Cloud Particle Size	
7	3,90	Shortwave Window	Yes
8	6.18	Upper-Level Water Vapor	Yes (6.48µm)
9	6.95	Mid-Level Water Vapor	-
10	7.34	Lower-Level Water Vapor	
11	8.50	Cloud Top Phase	
12	9.61	Ozone	
13	10.35	Clean IR Longwave Window	
14	11.20	IR Longwave Window	Yes (10.7µm)
15	12.30	Dirty Longwave Window	
16	13.30	CO ₂ Longwave Infrared	Yes
-			

3. Infrared Techniques

The split window difference (Window IR minus Dirty Window) can effectively isolate blowing dust and volcanic ash

Either the 10.35 or 11.2 µm can be used as the Window IR in the difference, but any thresholds will need to be adjusted accordingly

Generally speaking, negative brightness temperatures of 10.35 – 12.3 µm means blowing dust or volcanic ash

Band	Channel (µm)	Function		GOES-15	4. Infrare The EUM	d Techniques - RG ETSAT Dust RGB	
1	Dust R	GB Recipe					
2	Color	Band / Band Diff. (μm)	Min – Max Gamma	Physically Relates to	Small contribution to pixel indicates	Large Contribution to pixel indicates	
4	Red	12.3-10.3	-6.7 to 2.6 C 1	Optical depth / cloud thickness	Thin clouds	Thick clouds or dust	
5	Green	11.2-8.4	-0.5 to 20.0 C 2.5	Particle phase	Ice and particles of uniform shape (dust)	Water particles or thin cirrus over deserts	
7 8	Blue	10.3	-11.95 to 15.55 C 1	Surface temperature	Cold surface	Warm surface	
9	6.95	Mid-Level Wa	Mid-Level Water Vapor				
10	7.34	Lower-Level	Lower-Level Water Vapor				
11	8.50	Cloud Top Pl	Cloud Top Phase		DI	ist —	
12	9.61	Ozone			(mag	lagenta)	
13	10.35	Clean IR Lon	Clean IR Longwave Window		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
14	11.20	IR Longwave	IR Longwave Window		Dry	Air	
15	12.30	Dirty Longwa	Dirty Longwave Window			Moist Air	
16	13.30	CO2 Longwave Infrared		Yes			

Dust RGB from GOES-16 ABI at 2302 UTC, 23 March 2017

Blowing Dust – western China Himawari AHI Band 3 (red) Visible

010101 G-16 IMG 3 27 APR 15117 013000 01301 01701 01.00

True Color Imagery from Geostationary Orbit

Volume 97 Number 10 October 2016

20

Himawari-8 Imagery Passes the Eye Test

Channels for ABI, AHI, and others

Approx.		GOES-R	Himawari	GK-2	MTG	FY-4	
Central	Band	ABI	AHI	AMI	FCI	AGRI	
Wavelength (µm)	Explanation	Central Wavelength (µm) [Band Number]					
0.47	Visible/reflective	0.47 [1]	0 47 [1]	0.46 [1]	0 44 [1]	0 47 [1]	
0.51		None	0.51 [2]	0.51 [2]	0.51 [2]	None	
0.64		U.04 [Z]	0.04 [3]	0.64 [3]	0.64 [3]	0.05 [2]	
0.865	Deflective	0.865 [3]	0.86 [4]	0.86 [4]	0.865 [4]	0.825 [3]	
0.91	Reflective	None	None	None	0.914 [5]	None	
1.378	Cirrus	1.378 [4]	None	1.38 [5]	1.38 [6]	1.375 [4]	
1.61	Snow/Ice	1.61 [5]	1.61 [5]	1.61 [6]	1.61 [7]	1.61 [5]	
2.25	Particle size	2.25 [6]	2.25 [6]	None	2.25 [8]	2.25 [6]	
3.90	Shortwave IR	3.90 [7]	3.9 [7]	3.85 [7]	3.8 [9]	3.75 ² [7,8]	
6.19		6.19 [8]	6.2 [8]	6.24 [8]	6.3 [10]	6.25 [9]	
6.95	Water vapor	6.95 [9]	6.9 [9]	6.95 [9]	None	7.1 [10]	
7.34		7.34 [10]	7.3 [10]	7.35 [10]	7.35 [11]	None	
8.5	Water vapor, SO ₂	8.5 [11]	8.6 [11]	8.6 [11]	8.7 [12]	8.5 [11]	
9.61	Ozone	9.61 [12]	9.6 [12]	9.63 [12]	9.66 [13]	None	
10.35		10.4 [13]	10.4 [13]	10.43 [13]	10.5 [14]	10.7 [12]	
11.2		11.2 [14]	11.2 [14]	11.2 [14]	None	None	
12.3	LOUGWAVE IN	12.3 [15]	12.3 [15]	12.3 [15]	12.3 [15]	12.0 [13]	
13.3		13.3 [16]	13.3 [16]	13.3 [16]	13.3 [16]	13.5 [14]	

True-color component bands are highlighted in red, green, and blue.

Goal: produce true 6050 Imagery similar to that being generated by CIRA for Himawari

Step 1: Rayleigh Corrections

- Molecular scatter of sunlight by the gaseous atmosphere is significant, particularly in the blue-band
- Adapted atmospheric correction software, applied previously to SeaWiFS/MODIS/VIIRS sensors, to AHI bands
- Corrections are a function of solar & satellite geometry

→ These atmospheric corrections are a critical step in attaining high-quality true color imagery

True Color Rayleigh-Corrected

Step 2: Fix the lack of Green

- Blend 510 nm green band with vegetation-sensitive 856 nm band to produce a 'hybrid green' band (G_H):
- G_H = (1-F) * R_510 + F * R_856 F F ~ 0.07 (experimental)
 - Provides enhancement to green vegetation and to mineral soils (e.g., deserts).
 - Minimal impact to other features of the scene (clouds, ocean, and shallowwater coloration)

True Color Rayleigh Hybrid F=0.07

Step 3: Simulate the Green Component

- Take advantage of the fact that Himawari has bands in the red, blue, nearIR, *and* green portions of the spectrum
- We build a 3-dimensional lookup table where the inputs are AHI 0.46 μ m, 0.64 μ m, and 0.86 μ m reflectance, and the output is 0.51 μ m (green)
- Example: this point
- may have reflectance values of
- Blue: 0.17
- Red: 0.64
- nearIR: 0.15
- and its corresponding green 0.51 μm reflectance may be: 0.32.
- The table entry (0.17,0.64,0.15) gets populated as 0.32.
- Continue this process for a large number of observations at multiple times of day, times of year, and for multiple surface types.

- - Now with GOES-16, for every pixel we get the Rayleigh-corrected red, blue, and nearIR reflectance, then consult the lookup table to get the corresponding green value.

15 Jan. 2017 – 1807 Z Green Component (simulated)

15 Jan. 2017 – 1807 Z Blue Component

15 Jan. 2017 – 1807 Z True Color

Saharan Dust – 1 Aug. 2018

Saharan Dust – 29 March 2018

Smoke – 11 August 2017

Smoke – 4 September 2017

Pollution – 30 November 2016

Pollution – 27 May 2017

Volcanic Ash – 3 November 2015

0002 HIMAWARI-8 2 3 NOV 15307 220000 06001 02401 01.00

Michael Folmer Satellite Liaison: 2018 Saharan air layer evaluation

Participants:

- WPC International Desk
 - NHC/TAFB
 - Key West WFO
 - Miami WFO
 - Melbourne WFO
 - Ruskin WFO
 - San Juan WFO
 - CIMH Barbados

September 2017 SAL Outbreak

Courtesy of Scott Lindstrom (CIMSS) CIMSS Blog: http://cimss.ssec.wisc.edu/goes/blog/archives/29877

September 2017 SAL Outbreak

Courtesy Ernesto Rodriquez (San Juan NWS)

Thank you

GOESOR

SEOSTATIONARY OPERATIONAL ENVIRONMENTAL SATELLITE R-SERIES

The next generation of geostationary environmental satellites

For more information visit www.goes-r.gov

www.facebook.com/GOESRsatellite

www.youtube.com/user/NOAASatellites

twitter.com/NOAASatellites

www.flickr.com/photos/noaasatellites