SNPP VIIRS vs. S5P TROPOMI Smoke Case Analysis

Shobha Kondragunta¹, Chuanyu Xu², and Pubu Ciren²

¹NOAA/NESDIS/STAR

²IMSG

Disclaimer: Work is preliminary. Not to be shared without contacting and getting approval from Shobha.Kondragunta@noaa.gov

Impact of Smoke on Ozone Production

- Fires release large amount of aerosols (smoke particles) and trace gases into the atmosphere
- Forecasters report ozone standard violations when smoke-laden air is transported into their domain
 - Optically thick smoke ozone levels are low
 - Optically thin smoke ozone levels increase
- Amount of photochemically produced ozone depends on smoke and NO₂ amount
 - Thick smoke inhibits ozone production by depressing photolysis of NO₂
 - Thin smoke, NO2 present in smoke leads to ozone production
- Is there a potential for SNPP VIIRS and S5P TROPOMI trace gas and aerosol products to explain the role of transported smoke in ozone air quality standard violations in the mid-Atlantic states

Sentinel 5P TROPOMI

- Launched by European Space Agency on October 13, 2017 as a precursor to operational Sentinel 5 EUMETSAT mission
- Single payload satellite
- Covers UV, UV-VIS, NIR, SWIR hyperspectral bands
 - Spatial resolution: 7 km x 7 km or 7 km x 3.5 km
- Air quality products: NO₂, SO₂, CO, CH₄, HCHO, aerosol layer height, UVAI,

SNPP VIIRS July 10, 2018

Absorbing Aerosol Index $AAI = -100[10g_{10}(R_{412}/R_{440}) - log_{10}(R'_{412}/R'_{440})]$

Dust Smoke Discrimination Index DSDI = $-10[10g_{10}(R_{412}/R_{2250})]$

Smoke detected if AAI > 10 and DSDI < 3

TROPOMI AI > 1.0 July 10, 2018

SNPP VIIRS July 23, 2018

Absorbing Aerosol Index $AAI = -100[10g_{10}(R_{412}/R_{440}) - log_{10}(R'_{412}/R'_{440})]$

Dust Smoke Discrimination Index DSDI = $-10[10g_{10}(R_{412}/R_{2250})]$

Smoke detected if AAI > 10 and DSDI < 3

TROPOMI AI July

23, 2018

TROPOMI AI >

TROPOMI CO July

23, 2018

- More observations in TROPOMI due to higher spatial resolution
- NUCAPS CO peak shifted to higher values than TROPOMI

Summary

- VIIRS true color imagery shows hot spots and smoke
- VIIRS aerosol indices are derived using visible/short-wave IR channels whereas TROPOMI uses UV wavelengths
- VIIRS algorithm does not remove surface contribution
- Analysis shows:
 - TROPOMI AI needs scaling or calibration update?
 - TROPOMI observes smoke over/near clouds that VIIRS missed
 - TROPOMI Carbon Monoxide (CO) plumes are consistent with VIIRS smoke mask. However, parts of CO plume is masked out if QF>0.75 is used.
- TROPOMI NO₂ product does not have enhanced values in smoke plumes

Questions

- Value of TROPOMI trace gas and aerosol index products to forecasters?
- How can forecasters use the products available in near real time through NOAA eIDEA with caveat that products are not available until 5 PM or so?
- Forecasters interested in participating in a test experiment of issuing a forecast with and without TROPOMI products to assess the value of CO, NO₂, and aerosol index please contact me or Amy.